Reconfiguration graphs of zero forcing sets

نویسندگان

چکیده

This paper begins the study of reconfiguration zero forcing sets, and more specifically, graph. Given a base graph G, its graph, Z(G), is whose vertices are minimum sets G with an edge between B B′ Z(G) if only can be obtained from by changing single vertex G. It shown that forest connected, but many graphs disconnected. We characterize complete graphs, show star cannot computing takes 2Θ(n) operations in worst case for order n.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the zero forcing number of some Cayley graphs

‎Let Γa be a graph whose each vertex is colored either white or black‎. ‎If u is a black vertex of Γ such that exactly one neighbor‎ ‎v of u is white‎, ‎then u changes the color of v to black‎. ‎A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that‎ if initially the vertices in Z are colored black and the remaining vertices are colored white‎, ‎then Z changes the col...

متن کامل

Zero forcing sets and the minimum rank of graphs ∗

The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i = j) is nonzero whenever {i, j} is an edge in G and is zero otherwise. This paper introduces a new graph parameter, Z(G), that is the minimum size of a zero forcing set of vertices and uses it to bound the minimum rank for numerous families of graphs, often e...

متن کامل

Zero forcing number of graphs

A subset S of initially infected vertices of a graph G is called forcing if we can infect the entire graph by iteratively applying the following process. At each step, any infected vertex which has a unique uninfected neighbour, infects this neighbour. The forcing number of G is the minimum cardinality of a forcing set in G. In the present paper, we study the forcing number of various classes o...

متن کامل

Radius-forcing sets in graphs

Let G be a connected graph of order p and let 0 ::f. s ~ V ( G). Then S is a rad(G)-forcing set (or a radius-forcing set of G) if, for each v E V(G), there exists v' E S with dc(v, v') ?: rad(G). The cardinality of a smallest radius-forcing set of G is called the radius-forcing number of G and is denoted by rf(G). A graph G is called a randomly k-forcing graph for a positive integer k if every ...

متن کامل

The Zero Forcing Number of Circulant Graphs

The zero forcing number of a graph G is the cardinality of the smallest subset of the vertices of G that forces the entire graph using a color change rule. This paper presents some basic properties of circulant graphs and later investigates zero forcing numbers of circulant graphs of the form C[n, {s, t}], while also giving attention to propagation time for specific zero forcing sets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2023

ISSN: ['1872-6771', '0166-218X']

DOI: https://doi.org/10.1016/j.dam.2023.01.027